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ABSTRACT 
 
As a renewable energy source, wind power is gaining popularity as a favoured alternative to 
fossil fuel, nuclear and hydro power generation. In Europe, countries are required to achieve 
15% of their energy consumption from wind by 2010 as the EU strives to meet its Kyoto 
obligations. Wind power is considered to be environmentally friendly and low cost. While 
environmental friendliness has come under scrutiny because wind turbines continue to pose a 
hazard to birds, are visually unappealing, affect the uses of land and change air flows, the 
purpose of this paper is to examine the question of its presumed low cost and effectiveness at 
reducing CO2 emissions by replacing power generated from fossil fuels. To do so, we develop a 
mathematical programming model of an electrical energy grid that employs power generated by 
a base-load nuclear power plant, a coal-fired power plant and a gas facility, with the latter used 
primarily to meet peak-load demand. We then introduce varying levels of wind power generating 
capacity into the grid. The results indicate that, at low levels of penetration, wind power can 
provide CO2 mitigation benefits at low cost. However, as the degree of penetrability increases, 
the costs of reducing CO2 emissions rise rapidly because of the spinning reserves required in the 
coal- and gas-fired power plants. Fossil fuels are consumed even though no power is generated in 
the eventuality that wind power is suddenly unavailable. The whimsical nature of wind energy 
makes it a less than desirable long-term source of energy. 
 
 
Keywords: renewable energy; wind and nuclear power; economics of power generation 
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INTRODUCTION 
 

Concern about climate change and rising concentrations of CO2 in the atmosphere has 

increased demand for non-fossil energy sources. One approach to lowering CO2 emissions is to 

switch from fuels with high carbon content per unit of energy, such as bituminous coal (24.5 tC 

per gigajoule) and oil (19.0 tC/GJ), to ones with lower carbon content such as natural gas (13.8 

tC/GJ). However, there are limits to such substitutions because there are limits to the availability 

of cleaner fossil fuels (Banks 2003). The alternative, therefore, is to shift away from fossil fuels 

to renewable energy sources. 

In 2000, global energy consumption amounted to 9,963 million tonnes of oil equivalence 

(Mtoe), up 65% from the 6,040 Mtoe consumed in 1973, an increase of nearly 3% per annum. 

Fossil fuels accounted for 79.4% of the world’s energy consumption in 2000, while energy from 

nuclear and hydro sources accounted for 6.8% and 2.3%, respectively. Wind (0.026%), solar 

(0.035%) and tidal (0.004%) sources accounted for miniscule amounts of energy requirements 

(IEA 2003). Geothermal power generation contributed the third largest component of renewable 

sources of energy, after hydropower and combustibles/renewables/waste (CRW).  

The IEA forecasts an increase in global energy consumption to nearly 15 Mtoe by 2030, 

with consumption of fossil fuels rising faster in absolute terms than that of renewables (Cozzi 

2004). In relative terms, the share of natural gas in consumption is projected to rise the most (for 

the reason noted above), followed by non-hydro renewables. The share of other energy sources is 

expected to fall, while the share of non-renewables is expected to remain small – about 4% of 

primary energy consumption (ignoring CRWs) in 2030 compared to 2% in 2000. 

Solar and wind power are often considered the best options for replacing fossil fuels. Any 

discussion of solar and wind power needs to address the problems of storage and transmission, 



 3

and environmental spillovers. Electricity is generated by fossil fuels, nuclear power plants, 

hydropower generating stations, wind turbines or solar photovoltaic (PV) cells. With the 

exception of power generated from fossil fuels, each of the other sources has some limiting 

constraints. Natural gas and crude oil are highly mobile, while coal is less so, but power plants 

can increase or reduce fuel use according to demand, which varies substantially during the day 

and across seasons and regions. Nuclear power plants are difficult to shut down and are best at 

meeting a continuous, base-level demand; hydropower is best suited to providing a low-level of 

power (based on lowest river flow) or power at times of peak demand (from water stored behind 

a dam). While storage enables hydropower to be available at peak times, overall availability is 

subject to the vagaries of precipitation and competition for water with agricultural, wildlife, 

industrial, commercial and residential users. It is vulnerable to droughts and periods of high 

rainfall when water simply spills over the dam because reservoir capacity is too great. Hydro 

capacity can only be increased by building more dams or higher ones, something opposed by 

many environmental groups because of their destructive impact on fish and other wildlife habitat. 

Indeed, there are serious proposals to dismantle dams in some areas of the western United States 

in the interests of wildlife.  

Solar and wind energy are similarly limited. One study of the potential of solar power 

concluded that all of the 1997 electrical demand in the United States could be met from a single 

solar photovoltaic plant in Nevada of 28,000 km2 (Turner 1999). Neglected in the calculations 

were transmission, storage, timing and terrain (Love et al. 2003). Also ignored was the fact that, 

in order to meet electrical demands that fluctuated during the day and across seasons, some 

method would be required to store the energy to smooth out the peaks and troughs. Using a 

computer model of daily energy demand, Love et al. calculated that the smallest solar PV system 
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would require a minimum area of 41,000 km2 if located in the ideal location (western Texas), but 

much more area if located elsewhere. The analysis does not address the energy required for 

mobility and space heating and other needs that are currently met by natural gas, coal or fuel oil.  

Love et al. (2003) also estimated the area required to satisfy U.S. demand for energy 

using most up-to-date wind technology. For wind power, it is necessary to store an equivalent of 

108 days of average demand in addition to satisfying ongoing demand. In that case, the smallest 

wind farm would be 193,000 km2, but then spread over three locations in Kansas, Texas and 

Wyoming.  

Nonetheless, wind energy has become the world’s fastest growing energy source, partly 

because of advances in technology and lower production costs. According to the World Wind 

Energy Association, in 2003 installed wind energy capacity increased by 26% worldwide, from 

31,117 MW at the end of 2002 to 39,151 MW by December 31, 2003. The most successful wind 

energy markets have been in Europe, particularly Denmark, Germany and Spain, and the EU 

now requires that 15% of all electricity be produced from wind. In Denmark, the current average 

penetration rate of wind energy is nearly 20%. In some areas of western Denmark, wind accounts 

for as much as 50% of the electrical power generation, and the Danish government’s target is for 

wind to account for half of all power generation in the country by 2030. Although Europe 

accounts for 70% of world’s installed wind energy capacity, other regions are beginning to 

emerge as substantial markets. There has also been an upsurge in the use of the technology in the 

United States as well as in many developing countries.  

Among renewable energy sources, wind power has the reputation of being most cost 

effective. With improvements in technology and growth in the market for wind energy, the cost 

of electricity generated by modern wind farms has declined 80% since 1980 – from about 38 
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cents per kilowatt hour (kwh) to about 4 cents. Cost projections for 2005 are as low as 2.5-3.0 

cents per kwh, making it competitive with fossil fuel energy. However, these cost estimates 

ignore the externality costs that wind imposes on an electrical grid – the costs of maintaining 

‘spinning reserves’ in the event that wind is unavailable for generating electricity. In other 

words, because wind may not be available to meet demand at a particular time, other generators 

need to be up and running to provide electricity the moment the power generated by wind 

turbines falls below what is ‘expected’. If backup electricity is produced by hydropower, this is 

not a problem – a hydro dam constitutes the best storage device. If backup power is provided by 

a coal-fired generator, as in Estonia (Liik, Oidram and Keel 2003), fuel will be consumed 

(burned) but no power will be generated unless that available from wind turbines falls below that 

required.  

There are other externality costs associated with wind-generated power (e.g., noise from 

the rotating blades, visual dis-amenities of wind towers, impact on wildlife). The purpose of the 

current paper, however, is only to investigate in greater detail the externality costs associated 

with the vagaries of the wind. While a number of researchers have investigated this issue from a 

purely practical (enginerring) standpoint, to our knowledge none have examined it from an 

economics perspecitve. In particular, there are few estimates of the marginal value of unexpected 

reductions in wind. We provide such estimates using shadow prices from a constrained 

optimization model of an electric grid. 

We begin in the next section with a more detailed discussion of the operation of an 

electric grid and the role of wind farms in such a grid. We also discuss problems with the 

whimsical nature of wind that are unrelated to the impact on other power generating sources. 

Then, in section 3, we provide a mathematical model of an electric grid that includes wind and 
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other sources of power. Given that nuclear energy offers an non-fossil fuel alternative to wind 

power, we consider the role of nuclear energy in such a grid as well. Simulation results are 

provided in section 4, while our conclusions and discussion follow in section 5. 

 

PRODUCING ELECTRICITY FROM WIND: BACKGROUND  

An obvious drawback of wind energy is that wind is neither steady nor predictable. Even 

at the most resourceful area, there are periods when wind does not blow. The uncertainty of 

available wind power requires certain amount of backup generation to provide electricity when 

wind speed is low. The operation and maintenance costs of these backup power plants 

dramatically reduce the benefit of introducing free energy – wind. The fluctuation of wind power 

naturally leads to the idea of storage. When the total output exceeds current demand, the surplus 

energy is put into storage. The stored energy can be withdrawn to make up the deficit during 

periods when the wind does not blow strongly. However, a storage system imposes an energy 

penalty in both the input and output conversion processes. A typical battery system has a 

roundtrip efficiency of about 80%, and this number is about 35-40% for fuel cell systems. As a 

substantial fraction of the energy is wasted in the storage system, the capacity of the wind power 

plants needs to be increased to overcome these losses.  

More and more people are starting to realize that opportunity cost of land used by wind 

farms plays an important role in determining the true cost of electricity from wind energy. Still, it 

is rare to come across discussion of land area requirements of utility scale wind farms and the 

associated costs of those lands. Conventional power plants such utilizing nuclear, coal or natural 

gas require much less land to generate the same amount of electricity. In order to generate a 

thousand megawatts, which can provide electricity for 1 million houses or a mid-size city in the 
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United States, the land requirement for a thermal plant such as coal or nuclear power plant is 

around 0.5x103 to 1x103 square meters compared to 0.3x106 to 1x106 square meters required for 

a wind power plant. According to the United States Department of Agriculture, the average farm 

real estate value, a measurement of the value of all land and buildings on farms, was $1,270 per 

acre as of January 1, 2003. That is, in order to supply electricity for a mid-size city in the United 

States, the cost of land for a thermal power plant will be $157-$314 on average compared to 

$104,608-$313,823. Therefore, although wind power plants are cost competitive based on daily 

production and maintenance, the cost of land requirements will highly affect the profitability of 

the wind power plants. 

 

A MODEL OF THE ELECTRIC GRID: INTEGRATING WIND POWER 

The approach for assigning electricity production to generators is a two-step procedure. 

First, a day-ahead, unit commitment (DAUC) model is used to schedule next-day delivery from 

various power sources on an hourly basis. A projection or forecast of hourly demand is used to 

determine the amount of total power that needs to be delivered in each hour. Engineers employ 

simulation models to determine how next-day power needs are to be assigned to each generator 

(Hirst and Hild 2004b). It works as follows: In the simulation model, the Integrated Systems 

Operator (ISO) will announce prices at which it will purchase power for each hour in the next 

day. Generators will offer to supply power for each hour in the next day at those prices. The 

prices that the ISO is willing to pay will be readjusted up and down until enough power will be 

offered to meet anticipated demand in each hour of the next day. Although the output from 

DAUC models focuses on the next day, the simulations need to take into account what happens 
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over several days so that capacity, ramping-up, ramping-down and other constraints between 

days can be appropriately taken into account.   

Second, there is a real time (RT) assignment. Again, a simulation model is used to make 

these assignments on a real-time basis. These models are run every few minutes to ensure that 

the electrical demands of consumers are met and the system does not ‘crash’. At this level, actual 

ramping-up and ramping-down constraints are real and any shortfall or oversupply needs to be 

dealt with. Generators that have the greatest variance between what they commit to and what 

they actually deliver (viz., wind turbines and PV cells) create the largest problems in real time, 

and this problem is not resolved if the operator makes an arbitrary adjustment of the generator’s 

day-ahead commitment.  

In this paper, rather than use a simulation model, we use mathematical programming 

methods to determine the allocation among generators/power plants and the shadow prices of 

various constraints on the system. This is a more appropriate method for determining shadow 

prices than simulation modeling. At this stage, we only describe a DAUC model. While this 

qualifies our conclusions, it is important to recognize that our hourly time step is arbitrary. 

Indeed, we use one-hour intervals only for descriptive convenience, as any length of interval 

could be envisioned. A smaller time step may be more appropriate because, by reducing the time 

step to a real-time level (a 15-minute or even one-minute interval), the rates at which power 

plants/generators can change their production become more constraining.  

In our model, we assume that the grid will take all the available electricity produced by 

the renewable energy sources. The grid operator chooses the outputs from all available sources 

(generators) to maximize total profit subject to a number of technical and economic constraints. 

Mathematically, the objective is to maximize profit: 
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where π denotes profit ($), TR is total revenue ($), TC is total cost ($), n denotes a 

generator/power plant using fossil fuels, nuclear or hydro power (of which there are N), r refers 

to a generator/plant using a renewable source of energy such as wind (of which there are R), d  is 

number of days, t refers to the hour since the system started, F is fixed cost ($), Q is quantity of 

electricity (KW), P its price ($/KWh), b is variable cost ($), I is  idle capacity (KW), D refers to 

demand (KW), A is a specified safety allowance factor, C total capacity (KW), and Ti is the time 

it takes to ramp up production from generator/ plant i (= 1, ..., N+R). The profit function is 

maximized subject to the following constraints: 

1. Demand is met in every period (hour):   ∑ ×=∀∑ ≥+
n r

trtnt dtDQQ 24...,,1,,  

2. A safety allowance is satisfied every period: dtDAI
NR

i
tit ×=∀∑ ×≥

+

24...,,1,,  

3. Ramping-up constraint:     CRi
T
CQQ

i

i
itt +=∀≤− − ,...,1,),1(1,  

4. Ramping-down constraint:   CRi
T
CQQ

i

i
itit +=∀−≥− − ,...,1,),1(,  

5. Capacity constraints:    CRiCIQ iitit +=∀≤+ ,...,1,)( ,,  

6. Non-negativity:      0, ≥itQ , 0, ≥itI  

If output price is assumed to be constant in every hour, the profit maximization objective can be 

re-specified as a cost minimization problem. 

In our specific application, the electricity demand plus safety allowance is satisfied by 

available wind power and the production from three other power plants (generators) – a nuclear 
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power plant and ones that are fired by natural gas and coal. The safety allowance factor is 

assumed to be 15% of the demand. In this system, wind power is modeled as a uniform random 

variable with values between zero and the generating capacity of the wind power plant. Since 

wind output is known beforehand, rational expectations are assumed. The choice variables of this 

optimization problem are the electricity outputs of the three conventional power plants. If the 

available electricity produced by the renewable energy sources is more than enough to satisfy the 

demand in any given period, the excess electricity produced is lost as there is no provision for 

storage (because it would be too expensive).1  

The cost functions represent the ranking of the marginal costs of the four power plants 

(gas>coal>wind>nuclear). The ramping constraints are meant to represent a ranking of how fast 

a power plant adjusts its production. From the fastest to the slowest, the ranking used in this 

model is wind>gas>coal>nuclear. The model is solved for 48 hours, but can potentially be 

solved for any number of days and/or periods of arbitrary length.  

Four scenarios are designed based on different potentials for generating wind: a base case 

where all power is generated from existing thermal (fossil fuel and nuclear) power plants, a low 

wind scenario, a moderate wind scenario, and a high wind scenario. The base case assumes that 

wind energy is absent from the system, so that the hourly demands plus safety allowances are 

satisfied by the natural gas, coal and nuclear power plants. These three thermal power plants are 

assumed to have equal generating capacities. The low wind scenario assumes that the ‘name-

plate capacity’ of the wind power plant is 10% of the total capacity from the other three power 

plants. In this scenario, the potential wind energy penetration rate turns out to be around 9%. 

This penetration rate gradually increases in the moderate and high wind scenarios. The moderate 
                                                 
1 If any generator produces power that cannot be used by the grid because there would be an oversupply, 
it is a simply matter of throwing a switch to prevent the power from entering the grid. 
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wind scenario assumes that the capacity of a wind farm is equal to the capacity of each of the 

other power plants. In this case, the potential wind energy penetration rate is 25%. The high wind 

scenario assumes that the capacity of the wind power plant is double the capacity of the other 

power plants. Therefore, the potential wind energy penetration rate is 40%. 

 
SIMULATION RESULTS 

The mathematical programming problem is solved using GAMS. Demand data are from 

Reliant Energy’s hourly demand data for the first two days of 2000, but then standardized so that 

the greatest demand during these 48 hours is set to 1000 megawatts (MW). For the base-case 

scenario, therefore, each of the gas, coal and nuclear power plants is assumed to have a 

maximum capacity of 400 MW to cover demand and the safety allowance. As noted earlier, the 

power available from a wind generator (farm) is modeled as a uniform random variable, with 

values between zero and the name-plate capacity of the wind farm. For different capacities, the 

amount of wind power available for each hour of the study period is plotted in Figure 1. The 

proportion of a wind farm’s generating capacity that is available to the grid is the same for each 

of the three wind scenarios because the same random number sequence is used to generate each. 

From the figure, it is clear that the low wind scenario has little ability to meet demand in 

any significant way, with available wind power never exceeding 10% of the demand at any time. 

When the name-plate capacity of the wind farm increases to 25% (moderate wind scenario) and, 

particularly, to 40% (high wind scenario), the effect of fluctuations in the amount of wind power 

entering the grid becomes dramatic. At times, wind can meet 40% of hourly demand in the 

moderate wind scenario, while it can exceed demand in the high wind scenario (hrs 28 and 29 in 

Fig 1).  
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Fig 1: Demand and available wind power for different wind farm capacities 
 

If available wind power exceeds demand in a given period, it is easy to shut off some 

deliveries to the grid, or use the excess power to ‘drive’ a storage device. The greater problem 

occurs when there is insufficient wind – when a wind farm cannot deliver the amount of power 

that the grid operator expects. To maintain the power grid’s integrity, a spinning reserve is 

required to provide electricity in case wind delivery is below expectation. The costs of 

maintaining this spinning reserve could potentially reduce the overall benefit of introducing wind 

energy (as noted in the previous section). In Fig 1, for example, the available wind power at hour 

27 is nearly zero, so the three ‘conventional’ power plants will need to cover the shortfall, with 

the amount each provides to this shortfall in supply determined by their respective marginal costs 

during that hour.2 At hour 28, on the other hand, available wind power is nearly 800 MW, which 

is almost enough to satisfy the electricity demand plus safety allowance for that hour. Ideally, all 
                                                 

2 The mathematical programming solution will equate the shadow marginal costs across each of the 
conventional power plants at each hour.  
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other power plants should be nearly shut down during hour 28, but, as we see below, because 

conventional power plants cannot adjust production quickly enough, the real output at hour 28 

will be much higher than what is needed. Hence, power plants will be ‘on line’ even though their 

power is not required – fossil and/or nuclear fuel will be consumed. Unless this electricity can be 

stored or sold into another grid, it is wasted. 

Total production in each hour from all power plants in each of the four scenarios is 

plotted in Figure 2. In the base case, the solution to the profit maximization problem is that the 

total output from the three conventional power plants is equal to the electricity demand from the 

grid plus the safety allowance. Electricity generation and demand track each other nearly 

perfectly. When wind power is introduced into the system, the potential for waste arises. Unless 

the amount of power provided by the wind farm exceeds demand, all wind-generated power is 

consumed and/or used to satisfy the safety requirement. That is, any adjustments to changes in 

the difference between demand and available wind power are made by the conventional power 

plants.  
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Fig 2. Total production of power from all generators 



 14

When the capacity of the wind farm amounts to 10% of the total capacity of conventional 

plants (low wind scenario), there is little difference between this scenario and the base case. This 

is primarily due to the fact that, since we assume the grid operator to know beforehand how 

much wind to expect in a given hour (even though it is a random variable), the adjustments to 

conventional power deliveries between one period and the next resulting from the whimsical 

nature of the wind are well within the ‘ramping’ factors for the power plants. That is, when a 

small amount of wind capacity is included in an electrical grid, the grid operator is able to adjust 

plant outputs in an optimal fashion. We suspect that relaxing the rational expectations 

assumption (which is not modeled here) will result in the generation of excessive power, 

reducing the benefits of wind power. 

In the moderate and high wind scenarios, however, the fluctuations in wind power exceed 

the ability of conventional power plants to pick up the slack. Thus, in order to satisfy system and 

physical constraints the amount of power generated by the system exceeds demand plus the 

required safety allowance, sometimes by a substantial amount, by more than 30% in some cases 

in the moderate wind scenario and more than 50% in some cases in the high wind scenario. Even 

though the system operator has perfect foresight regarding the availability of wind power and 

adjusts output from the three conventional power plants in the most economically optimal 

fashion, significant amounts of excess power are being produced. It is simply not possible to 

ramp up or ramp down production in conventional power plants quickly enough to take into 

account the variability in power supply from the renewable source. The problem is one of 

adjustment. Clearly, the longer the time required for power plants to adjust to changes in output 

needs, the more difficult it is to operate such plants without waste. 
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As the name-plate capacity of a wind farm increases relative to the power generated from 

conventional plants, the variability in available wind power becomes so large relative to hourly 

demand that the ability of conventional power plants to adjust production is adversely affected. 

The reason is that conventional power plants must satisfy the demand left after all available wind 

power is used. While demand varies across periods and seasons, it is relatively stable and 

predictable compared with wind volatility. It is the volatility introduced by wind to which 

conventional power generators cannot adjust quickly enough. This results in fuel wastage as 

conventional power plants continue producing unnecessary electricity as a spinning reserve 

because they cannot raise or lower output quickly enough. Since ‘conventional’ power 

generators differ, however, it is necessary to investigate what happens at the individual 

generator/plant level. 

In the base-case scenario, production from the coal plant is equal to its capacity at every 

hour. However, as indicated in Fig 3(a), as the size of the wind farm increases, there will be a 

decline in the electricity produced by the coal power plant.  

In the base case, the gas-fired power plant takes on the role of ‘peak provider’. In the 

model (as in the real world), the gas plant can adjust quicker to changes in demand than either 

coal or nuclear power, while it also has the highest marginal costs (due to high fuel costs). Thus, 

the gas plant never produces at capacity but is used as a peak-demand power source. As a result, 

the production level from the gas power plant is lower than the other two conventional power 

plants in every scenario, as indicated in Fig 3(b). The introduction of wind leads to greater 

volatility in the electricity supplied by natural gas. For example, between hours 18 and 20 in the 

moderate- and high-wind scenarios, the gas plant is shut down, but in hours 27 and 30 electricity 

supplied by gas is even higher than in the base case. As a peak demand power source, the 



 16

production from the gas power plant is low when wind power is peaking and high when wind 

power is low or unavailable. 

(a) Coal Plant 
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(b) Gas Plant 
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(c) Nuclear Plant 

 

0
50000

100000
150000
200000
250000
300000
350000
400000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Hour

K
W

Base Case Little Moderate High
 

Fig 3. Electricity productions from each power plant in different scenarios 
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As indicated in Fig 3(c), the nuclear power plant always produces at capacity in the base-

case scenario. Since the nuclear power plant is designed to deal with base load, the reduction in 

the amount of nuclear energy produced as wind is introduced is very small. The nuclear power 

plant has the lowest marginal cost among the three conventional generators, and it cannot adjust 

production as quickly as the conventional plants. The system operator will always prefer to use 

nuclear power to meet any demand not satisfied by wind power. 

Changes in power production provide little if nay information about how wind affects 

profits. It is the effect that changes in wind power availability has on the profitability of 

conventional, extant power plants in an electrical grid which provides information on the true 

cost of wind power. Changes in the profitability of the conventional power plants in our model 

are plotted in Fig 4 for each of the wind scenarios. Profit is calculated as the difference between 

the revenue from selling electricity to the grid and the cost of producing electricity, which 

includes the amount supplied to the grid, idle capacity to meet a required safety allowance, and 

any excess generation. Given that we had no data on actual costs but ranked them based on 

discussions with experts, absolute profit has little meaning. Nonetheless, changes in profit 

provide some indicator of direction and, in the future when actual data on costs become 

available, changes in profit magnitude can be used to determine the true cost of wind power. 
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(a) Coal Plant 
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(b) Gas Plant 
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(c) Nuclear Plant 
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Fig 4. Profit level for each power plant in different scenarios 
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As the name-plate capacity of a wind farm increases, the coal plant experiences periods 

where net returns are negative (Figure 4a). The coal power plant is the biggest loser in the 

industry as the electricity generated from coal is used mainly as idle capacity to satisfy the safety 

allowance as gas-fired power is supplied at higher marginal cost so it is not used as idle capacity. 

Meanwhile, nuclear power production is too inflexible to respond as quickly to changing demand 

as power from coal, so it too is not used as idle capacity. 

As noted in the discussion pertaining to Figure 3, gas is used mainly for peak demand due 

to its higher marginal cost and ability to respond quickly to demand. Thus, its profitability is 

affected less than that of the coal-fired plant (Figure 4). Nonetheless, as the degree of wind 

penetration into the grid increases, profitability of gas declines. 

Profits in the case of the nuclear power facility do not change much between the base 

case, low wind and moderate wind scenarios, because the nuclear power plant operates at near 

total capacity all the time with output sold to the grid to satisfy base-load demand rather than 

being reserved as idle capacity. When a large wind farm is introduced into the grid, the picture 

changes completely (Figure 4c). Although the nuclear power plant experiences some vagary in 

production from one period to the next in the high wind scenario (Figure 3c), profits are affected 

quite significantly as a result of large fluctuations in wind power. The reason is that more nuclear 

power sits idle than ever before, and this imposes large costs on the system. 

In the absence of actual price data, the profits shown in Fig 4 do not reflect the true profit 

levels for each power plant. However, with an assumed constant output price for power from 

each power plant and for each period, the analysis provides some indication of the direction of 

profit movement when integrating wind power into the electricity grid. 
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SUMMARY AND FURTHER DISCUSSION  

When no wind power is available to an electrical grid, base-load demand will be supplied 

by nuclear- and coal-fired power plants, while gas-fired generators will supply peak demand as 

required. The marginal costs of nuclear energy are low, while it is difficult to change output from 

one period to the next. A great deal of advance planning is often required to change production at 

nuclear power plants. Gas-fired power plants are often more expensive at the margin than coal-

fired plants, which is why the latter are used to satisfy peak-demand and legislated safety 

requirements. Coal plants also require more time to increase or decrease their output. Thus, even 

when nuclear, coal and gas power plants have the same capacity, nuclear power is the more 

profitable of the three as a result of its lower costs. However, coal is beneficial in such a system 

because it is able to satisfy any needs for idle capacity (whether the result of safety allowances or 

need to adjust power supply very rapidly). Since the idle electricity is not sold on the grid, it is a 

cost to the producer. Finally, gas-fired power is important because, in the absence of 

hydropower, it offers the only option for quickly increasing or reducing power output. 

The introduction of wind energy causes problems for an electrical grid such as the one 

studied in this paper, because wind brings additional variability or randomness. As the results of 

this analysis indicate, this is generally unimportant as long as wind penetration rates are low. 

With low wind penetrability, the nuclear power plant still runs at full capacity, coal use is 

slightly reduced, and the gas plant easily covers an variability between demand and output from 

the other generators (although its overall production is somewhat lower than in the absence of 

wind).  

Problems begin when the capacity of a wind farm becomes significant, as in our 

moderate and high wind scenarios. As wind penetrability increases, the ‘effective demand’ for 
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power, defined as the difference between actual demand for electricity and that supplied by wind, 

becomes increasingly variable. Power plants can no longer adjust quickly enough to changes in 

effective demand. Indeed, at very high levels of penetrability (our high scenario), even the output 

of base-load, nuclear power plants is affected. With moderate and high levels of wind power 

available to the system, costs of operating thermal power plants increases and, importantly from 

an environmental standpoint, benefits of reducing CO2 emissions are mitigated by the fact that 

fossil fuels continue to be consumed by coal- and/or gas-fired powered plants simply to cover the 

possible sudden fall down in wind output.  

Finally, the model developed in this study is a simple representation of the allocation of 

power across generators in an electrical grid. While real-world electrical grids are much more 

complex, and operate on the basis of day-ahead unit commitments and real time allocation to 

generators, the current model does not consider this difference. As noted earlier, however, the 

distinction between DAUC and RT operations is somewhat arbitrary because it makes no 

difference to the analysis if the one-hour time step is reduced to a time step more appropriate to 

real-time operations (such as minutes). What matters is the rate at which (thermal) power plants 

change output to meet changes in effective demand. Ramping-up and ramping-down rates are 

more constraining in real time than in DAUC time, while costs of rapid adjustment are also 

higher.  

Perhaps the most constraining assumption in the current model is that of rational 

expectations – that the amount of electricity demanded and the wind power available are known 

a priori. Although sophisticated forecasting tools can be used to forecast demand with a high 

degree of confidence, future projections of wind availability are much less certain. For this 

reason, it may be important to separate DAUC allocations of power from RT allocations in a 
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future modeling exercise. While more realistic cost of production data for thermal power plants 

would be helpful, it may be more fruitful to examine alternative mathematical programming 

approaches, such as ‘soft computing’, because information on the operation of power plants and 

an electrical grid is never likely to be adequate. 

In conclusion, it is often taken as a shibboleth that humans should harness the wind for 

power, and that the more wind power that can replace fossil fuels the better. At the same time, 

nuclear power is presumed to be a menace because of its environment spillovers (waste disposal, 

risk of meltdown) and potential health risk. The results of the current study indicate that some of 

these notions may be fallacious. In particular, we find that wind power may not be capable of 

delivering the environmental benefits of reduced CO2 emissions that are attributed to it. 

Photovoltaic cells are expensive and gobble up land on a much larger scale than wind, because, 

even though solar PV produces some 10-16 watts (W) of energy per square meter compared to 1-

3 W/m2 for wind,3 solar power is an exclusive land use while wind turbines permit other uses of 

land, such as agriculture (e.g., grazing, some cropping) or urban uses (e.g., commercial and 

industrial terrain). There are also limits to hydro, geothermal, biomass and tidal sources of 

power. Therefore, without major and unforeseen advances in technology nuclear power may 

offer the only realistic alternative to fossil fuels in the short and medium term (Scott 2004). 

                                                 
3 This compares to thermal coal, nuclear or gas plants that produce 1-2 kW/m2. 
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